Archives
One Unspoken Rule of Algebra
Here's an algebra tip! Whenever you're asked to prove $$A/B\cong C$$ where $A,B,C$ are groups, rings, fields, modules, etc., mostly likely the The First Isomorphism Theorem involved! See if you can define a homomorphism $\varphi$ from $A$ to $C$ such that $\ker\varphi=B$. If the map is onto, then by the First Isomorphism Theorem, you can conclude $A/\ker\varphi=A/B\cong C$. (And even if the map is not onto, you can still conclude $A/B\cong \varphi(A)$.) Voila!
Related Posts
Completing a Metric Space, Intuitively
The Back Pocket
Motivation for the Tensor Product
The Back Pocket
Need to Prove Your Ring is NOT a UFD?
The Back Pocket
Borel-Cantelli Lemma (Pictorially)
The Back Pocket
Leave a comment!