Archives
Operator Norm, Intuitively
If $X$ and $Y$ are normed vector spaces, a linear map $T:X\to Y$ is said to be bounded if $\|T\| <\infty$ where $$\|T\|=\sup_{\underset{x\neq 0}{x\in X}}\left\{\frac{|T(x)|}{|x|}\right\}.$$ (Note that $|T(x)|$ is the norm in $Y$ whereas $|x|$ is the norm in $X$.) One can show that this is equivalent to $$\|T\|=\sup_{x\in X}\{|T(x)|:|x|=1\}.$$ So intuitively (at least in two dimensions), we can think of $\|T\|$ this way:
Related Posts
Why are Noetherian Rings Special?
The Back Pocket
Two Ways to be Small
The Back Pocket
"Up to Isomorphism"?
The Back Pocket
Need to Prove Your Ring is NOT a UFD?
The Back Pocket
Leave a comment!