The First Isomorphism Theorem, Intuitively

Welcome back to our little discussion on quotient groups! (If you're just now tuning in, be sure to check out "What's a Quotient Group, Really?" Part 1 and Part 2!) We're wrapping up this mini series by looking at a few examples. I'd like to take my time emphasizing intuition, so I've decided to give each example its own post. Today we'll take an intuitive look at the quotient given in the First Isomorphism Theorem.

Example #1: The First Isomorphism Theorem

Suppose ϕ:GHϕ:GH is a homomorphism of groups (let's assume it's not the map that sends everything to the identity, otherwise there's nothing interesting to say) and recall that kerϕGkerϕG means "You belong to kerϕkerϕ if and only if you map to the identity eHeH in HH." I'd like to convince you why it's helpful to think of the quotient G/kerϕG/kerϕ as consisting of all the stuff in GG that doesn't map to eHeH.          

First notice that every element of GG is either 1) in kerϕkerϕ or 2) is not. And there's only one way to satisfy 1)---you're simply in the kernel. This is why we have exactly one "trivial" coset, kerϕkerϕ. On the other hand, there may be many ways to satisfy 2) and is why there may be many "nontrivial" cosets.

But just how might an element gGgG satisfy 2)? Well, ϕ(g)eHϕ(g)eH, of course! But notice! There could be many elements besides  gg who also map to the same ϕ(g)ϕ(g) under ϕϕ. (After all, we haven't required that ϕϕ be injective.) In fact, every element of the form gggg where gkerϕgkerϕ fits the bill. So we group all those elements together in one pile, one coset, and denote it gkerϕgkerϕ. The notation for this is quite good: the little gg reminds us, "Hey, these are all the folks that map to the value of ϕϕ at that gg." And  multiplying gg by kerϕkerϕ on the right is suggestive of what we just observed: we can obtain other elements with the same image ϕ(g)ϕ(g) by multiplying gg on the right by things in kerϕkerϕ.      

 I like to imagine the elements of GG as starting off as dots scattered everywhere,  

which we can then organize into little piles according to their image under ϕϕ. In fact, let's color-code them:          

(Notice ϕϕ isn't necessarily surjective.) Now here's the key observation: we get one such pile for every element in the set ϕ(G)={hH|ϕ(g)=h for some gG}ϕ(G)={hH|ϕ(g)=h for some gG}. The idea, then, behind forming the quotient G/kerϕG/kerϕ is that we might as well consider the collection of green dots as a single green dot and call it the coset kerϕkerϕ. And we might as well consider the collection of pink dots as a single pink dot and call it the coset g1kerϕg1kerϕ, and so on. So we get a nice, clean picture like this:        

Intuitively, then, we should expect a one-to-one correspondence between the cosets of G/kerϕG/kerϕ and the elements of ϕ(G)ϕ(G). That's what the image above is indicating. And that's exactly what the First Isomorphism Theorem means when it tells us there is a bijection G/kerϕϕ(G).G/kerϕϕ(G). (In fact, it's richer than a bijection of sets---it's actually an isomorphism of groups!) Pretty cool, huh? We should also notice that there are exactly |ϕ(G){eH}||ϕ(G){eH}| ways to "fail" to be in kerϕkerϕ, and exactly 1=|{eh}|1=|{eh}| way to be in kerϕkerϕ. Typically, |ϕ(G){eH}||ϕ(G){eH}| is bigger than one, and so the interesting or substantial part of the quotient G/kerϕG/kerϕ lies in its subset of nontrival cosets, g1kerϕ,g2kerϕ,.g1kerϕ,g2kerϕ,. The First Isomorphism Theorem implies that this is the same as viewing the interesting or substantial part of ϕ(G)ϕ(G) as lying in all the elements of gg that don't map to the identity in HH.

And this is why I like to think of G/kerϕG/kerϕ as "things in GG that don't map to the identity."

A closing remark

At some point, you may have seen the First Isomorphism Theorem stated as follows:Theorem: Let ϕ:GHϕ:GH be a group homomorphism and let π:GG/kerϕπ:GG/kerϕ be the cannonical (surjective) homomorphism ggkerϕggkerϕ. Then there is a unique isomorphism ψ:G/kerϕϕ(G)ψ:G/kerϕϕ(G) so that ϕ=ψπϕ=ψπ, i.e. so that the diagram on the right commutes.

On the surface, this sounds fancy, but it's really just the concise version of our discussion above. We can see this by matching up our pictures with the diagram:           

The diagram simply states the obvious: the map ϕϕ from GG  naturally partitions the elements of GG into little (color-coded) piles, according to where they land in HH. This therefore gives us two ways to get from an arbitrary gGgG to its image ϕ(g)Hϕ(g)H. We can either send it directly there via ϕϕ. This is the diagonal arrow in the diagram. Or we can first send it to its corresponding color/pile/coset, and then realize, "Aha, everyone in that particular color/pile/coset maps to ϕ(g)ϕ(g), therefore gg goes there too." This is the composition of the horizontal and vertical maps, ππ and ψψ. And the uniqueness of ψψ just says, "This is super obvious!"

(By the way, there's nothing really special about groups here. There's a first isomorphism theorem for other algebraic objects, and the same intuition holds.)

Share
Related Posts

The Most Obvious Secret in Mathematics

Category Theory

A New Perspective of Entropy

Probability

Motivation for the Tensor Product

The Back Pocket
Leave a comment!